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Executive Summary

This research is intended to extend the knowledge base concerning logistical network modeling

and design. Basic research techniques were developed to begin to model logistical networks

within a hybrid simulation/analytic framework. The first step in this process is to develop robust

approximations for portions of large-scale simulation models. In this research, we examine the

novel ideal of utilizing neural networks as a meta-modeling technique to replace specific aspects

of a simulation. In this work, we start with the replacement of queueing stations within a logistics

network.. Any logistics network can be formulated as a network of material flowing through

processes requiring resources. We develop a new methodology for forming approximations and

develop improved approximators for queueing stations within a logistics network.

We demonstrate the use of neural networks to close the gap between the output of Whitt's

GI/G/m approximation and the results obtained via simulations of a GI/G/m queue. Once the

neural network has been trained, we can feed in the parameters and resulting output of Whitt's

GI/G/m approximation, along with additional information describing the arrival and service

distributions of the queue, and yield an acceptably accurate approximation for the expected wait

time in a GIIG/m queue. These approximations can be embedded in parametric decomposition

algorithms for the logistics network as a whole. The motivation for developing this

approximation is the integration of such approximation in hybrid simulation/analytic methods for

evaluating logistic networks. The neural network approximation developed easily beats Whitt's

approximation for correlated arrivals, but further investigation is needed to assure a robust

approximation. Future work should investigate the performance of these approximations within

the larger logistical network context.
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1 Introduction

The purpose of this document is to discuss the findings associated with the project entitled,

"Hybrid Simulation/Analytic Models for Military Supply Chain Performance Analysis." This

project represents a joint effort between the University of Arkansas Center for Engineering

Logistics and Distribution (CELDi) and the Air Force Research Laboratory (AFRL)'s Human

Effectiveness Directorate. The intended audience for this report is CELDi researchers and AFRL

personnel.

The use of information technology will allow for total asset visibility and the integration of

logistical operations and logistical planning so mission execution will be based upon anticipatory

and just-in-time strategies. Logistical planners must have the ability to evaluate rapidly the

performance of various deployment scenarios in order to optimize the delivery of the correct

materials at the correct times in the correct quantities to the correct locations. This research is

intended to provide basic research concerning logistical network modeling and design.

Techniques are examined to model logistical networks within a hybrid simulation/analytic

framework. In this research, the simulation/analytic framework is examined at the subcomponent

level. In simulation/analytic approaches, the network is first decomposed into subcomponents to

which the most appropriate modeling technique is applied.

The long-term goal of this basic research is to examine the feasibility of using hybrid

simulation/analytic techniques within logistical performance analysis in order to speed up the

execution of logistical planning scenarios while maintaining the integrity of the performance

predictions. We define the integrity of the performance prediction as consisting of the accuracy

and the precision of the resulting predictions. These methods may affect the accuracy of the

predictions by introducing bias. The bias may be the result of decreased model validity; that is,

the models may lose some of their representation power, or the bias may be due to statistical bias

introduced by approximation error. Because these methods incorporate simulation, the precision

of the predictions may also be affected. Any loss of precision may be the result of the effect of

statistical sampling error inherent in any simulation-based method.



The overall context of the problem is a supply system consisting of operational (production),

transportation and storage components. The operational components of the system perform

operations on units of work that flow through the system. Operational components involve the

use of constraining resources that add value in some manner to the final end-task to be

accomplished by the system. Transportation components are primarily involved in the movement

of work within the system. Storage components are used to hold intermediate work products to

gain efficiency in the use of the timing of operational or transportation resources. These types of

systems are generally regarded as queueing systems or more generally as stochastic processing

networks.

For example, a multi-indenture, multi-echelon spare parts inventory system falls into the general

class of systems considered within this research. A weapon system such as an aircraft may

consist of many different parts. The aircraft are subject to multiple processing steps (operations)

as they are made ready to fly missions. In addition, the parts move through repair facilities

organized into repair operations while transportation elements assist in moving the parts both

intra-facility and inter-facility. Figure 1.1 illustrates a simple spare parts supply chain that

contains these elements.
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Figure 1.1: Representative Spare Parts Supply Chain

Mathematical models of queueing and inventory systems, and more generally of stochastic

processing networks, are useful in analyzing and predicting logistic system performance. Two

primary challenges facing the application of queueing and stochastic inventory theory

approaches to modeling complex logistical systems are: 1) the inability to adequately represent

complex routing and scheduling, and 2) detailed mathematical representations causing difficult-

to-compute theoretical results. When easy-to-compute closed-form analytical results are

unavailable, two approaches have been used to analyze system behavior: discrete event

simulation and approximations. Simulation can be costly, time-consuming, and produce results

that depend upon statistical sampling techniques. In addition, computation times for adequately

analyzing large-scale logistical networks can also be computationally infeasible. Queueing and

inventory model approximations are mathematical models that approximate the behavior of

general classes of models for which analytical solutions are unknown or very difficult to

compute. Advances in network approximations, especially in parametric decomposition

approaches, have made for increased use of such techniques in modeling supply chains.

3



As an alternative to queueing network models, simulation can provide the level of detail required

to capture the complex routing and scheduling necessary for modeling the resource contention

involved in such networks. While simulation allows modeling flexibility, it creates difficult-to-

overcome data requirements and can be extremely computationally burdensome, especially when

the simulation must be executed repeatedly in a planning/optimization exercise.

Traditional queueing and inventory analytic approaches to logistical network design must be

made more amendable to the requirements of real logistical planners. Basic research in queueing

and inventory approximations and combined simulation/analytic techniques may provide the

necessary models to predict the behavior of complex logistical networks and serve as a basis for

the development of logistical software planning and optimization tools. This research examines

the major issues related to combining simulation and analytic techniques at the subcomponent

level. For example, we examine the following issues:

* What types of single-station approximations are the most appropriate?

* How can better (more robust) single-station approximations be developed?

* How can the single-station approximations be combined to model logistical networks?

* How can the analytical methods be properly combined with simulation techniques in the

most appropriate manner?

* What is the modeling integrity provided by these techniques?

The rest of this document presents the results of our investigation into these issues. We begin

with a review of some relevant literature and then present our results related to the single-station

models. A discussion of network modeling approaches is then presented. Finally, we wrap up

with our results concerning the integrity of these approaches and conclude with some areas for

future research.
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2 Literature Review

The purpose of this section is to provide an overview of the literature used during this project.

2.1 Analytical Methods

As previously mentioned, the analysis of stochastic processing networks begins with an ability to

predict the performance of a (single-station) queue. These queueing systems can be configured

into a network of queues to represent the system. In order to predict the system's performance,

several input parameters are needed. Whitt (1983) described the Queueing Network Analyzer

(QNA) software and used ca2, c2, and p to predict the performance of the queue, where ca2 is the

squared coefficient of the arrival rate, c/2 is the squared coefficient of variation of the service

time, and p is the traffic intensity. Other required inputs to the model are the number of servers

(m) and the arrival rates and service rates, which are denoted as 2 and/ , respectively.

Springer and Makens (1991) characterize finite queues through the use of k, which is the system

buffer capacity. Since Whitt's (1983) model assumes no capacity constraints, the parameter k

does not exist for QNA. A slight variation of this procedure is presented in Whitt (1994), in

which variability functions, instead of variability parameters, are used as inputs to the analytical

models.

2.1.1 Whitt's 1983 QNA Model

Whitt (1983) presented the Queueing Network Analyzer, or QNA, software. The purpose of

QNA is to approximate congestion measures for a network of queues. The software is intended

for use on non-Markov networks, so arrival processes do not have to be Poisson and service

times do not have to be exponential. He assumes each node in the network is stochastically

independent. The arrival process to each node is partially characterized by a few parameters,

which are represented by linear equations. The system of linear equations is solved to determine

the internal flow parameters. Once these parameters have been defined and a routing matrix has

been provided, each node is analyzed separately. Calculus transforms the parameters that define

each queue and node to represent operations such as merging, splitting and departure.

5



Whitt (1983) presents calculations for network throughput (X), the departure rate from the

network (d), the total rate of service completions (s), and the overall congestion of the network

(EN).

The throughput is equivalent to the total external arrival rate, )0.

ýO =),01 + .. + )ýOn

The departure rate from the network is given by the following equation:

n n

d =1
i=1 ~ ~j~i

where Xis the total arrival rate to nodej,

-yis the multiplicative factor of customer creation at the node, and

q is the routing matrix.

The total rate of service completions, s, is:

n n

i=1 i=1

The overall congestion of the network is:

EN =EN + ... +ENn

The results of the performance evaluation of the Queueing Network Analyzer can be found in

Whitt (1983).

2.1.2 Whitt's 1993 Model

Whitt's (1993) approximations are presented for the GI/G/m queue. The model presented has

unlimited waiting room, m identical parallel servers, and the queue operates on a first-come first-

served basis. All service and inter-arrival times are independent, identically distributed random

variables with general distributions specified by their first two moments. The arrival process is

i6



specified by X and Ca2, which are the arrival rate and the squared coefficient of variation of inter-

arrival time. The service process is specified by 7" and c,2, which are the service rate and the

squared coefficient of variation of service time. Expanding on Whitt's earlier QNA model,

service times may be non-exponential, and arrival processes may be non-Poisson.

Approximations are made for the non-Markovian routing network through the process of

parametric decomposition. Other assumptions made by Whitt (1993) are that traffic intensity, p,

is less than 1, and that service rate, T, is equal to 1. Traffic intensity, p, is equal to Xr/m.

Whitt (1993) focuses on approximations for the expected waiting time of a customer before

beginning service, or EW. The formula he presents on page 125 of Whitt (1993) for EWis:

EW2p rc +cJ EW(MIMIm)
E apc'sm•q('"c' 2

where (,o,c•,c2,m) =

I 4(c-c ) ) +4 . V(( +c 2)/2,m,p) c2 _c2

2 2 2 2(22

2c2 +2c )3 )+ 2 +C2 a +C4/2,m,p Ca <C 2

and EW(MMm) = zP(N > m)/ m(1 - p).

In the preceding equation, 0& and 45 denote functions of m and p, found in Whirr (1993). Measures

of interest other than expected waiting time, such as the number of busy servers (E[B]), the

expected queue length (E/Q]), the expected number of customers in the system at any given time

(E[N]), and the expected time in system (E[T]), can be found through simple analytical

relationships between these measures and expected waiting time. These formulas are also

presented in Whiff (1993) and summarized below.

7



E[N] =E[B] + E[Q]

E[T] = E[W] +,r

E[B] = mp =X

E[Q] =XE[W]

E[N] = XE[T]

In order to measure the accuracy of the approximations, Whitt (1993) uses absolute difference

and relative percentage error as performance metrics. As long as one of those values is below a

designated threshold, Whitt contends the approximation is accurate. He defines an adjusted

measure of error (AME) to combine the effects of the two performance measures:

"AME = min{AI exact - approx.I ,100 exact - appprox. )i/exact}

where A is a constant determined by the user that weights the importance of the two performance

metrics. Whitt does not present an exact value A for use in all calculations.

By evaluating the approximations based upon the performance metrics outlined above, Whitt

(1993) is able to draw the conclusion that the approximations work best when the probability

distributions for service time and inter-arrival time are not too irregular. The approximations are

less accurate when ca2 and cs2 are large. The approximations overestimate the actual values both

when m is large and p is small; however, the approximation works better than the old formula

when traffic is heavy (p is large). Whitt compared the approximation for different queueing

models. He concluded that the approximations work well for GLM/m queues when 0< Ca2<1, as

in an E4/M/m model. It also performs well for E2/E2/m models but is not always better than the

old approximation for G/H2/m models. He identifies room for improvement in the

approximations when C,2>1> c 2 and also when c,,2<1.

8



2.1.3 Springer and Makens' Model

Springer and Makens (1991) evaluated five different approximations for the GI/G/l/k queue,

which consists of single-station queues with finite buffers and general arrival and service

processes. The results of this paper can also be applied to the more general M/M/1/k system by

ignoring the second moments of the inter-arrival time and service time distributions. Basic

formulas were presented for the mean number of items in the system (L,), the probability of the

system being empty (po), and the probability of the system being full (pk), which are given

below. The performance measures Lq, W,, and Wq can be computed from these values.

p, 1-- + )p - k-• (,oP )

k (p =1).

1-p

k+I P1,
P0{= 1

Pk =POPk

The accuracy of five variations of these formulas was evaluated in terms of their relative

accuracy and relative bias. In terms of relative accuracy, the approximation developed by

Gelenbe was superior for both L, and po. The absolute relative error of Gelenbe's approximations

was 0.0638 for L, and 0.0294 for Po, both at a significance level of 0.01. The Gaver-Shedler

approximation was best for Pk, producing an absolute relative error of 0.2288. The Gelenbe

model was biased when the squared coefficients of variation are both high and low, but overall it

possessed less bias than the other approximations. For example, changing ca2 by 0.378 caused an

overestimation of 1.42% in Gelenbe's model, but caused an overestimation of 22.28% in Yao

and Buzacott's model. The approximations developed by Gelenbe for L, and Po and the

approximation developed by Gaver-Shedler forpk are presented below.

9



l-p2ey(k1) p•l,
PO=

[ (k_ ,1)/(c2 + C2 ) p ~l

p1 1

+ Pkk

1lk p~l

2

(1- P0X1-e ery(k-l'

Pk1 t i- e-e1

k

2.2 Neural Network Methods

The work most closely related to ours is that of Shin, Sargent, and Goel (2002). Shin, Sargent,

and Goel present a systematic approach to queueing approximation via meta-modeling using

Gaussian radial basis functions, which are specialized feed-forward networks having three layers

that map an input space onto a desired output space, and use Gaussian basis functions. They use

the SG algorithm to determine the number of basis functions, the basis function centers, and the

basis function weights. For a detailed explanation of the SG algorithm, we refer the reader to

Shin and Goel (1998, 2002). An additional parameter specifies the coverage of the input space,

with 100% coverage requiring one basis function for every input value, permitting direct control

over the model complexity. They demonstrate their approach on the M/M/I queue, with a data

set created by fixing the arrival rate and varying the service rate. They vary the basis function

widths to create a variety of different meta-models for which they compute both the fitting and

test mean squared errors (MSE) defined by the equation:

10



MSE=--(y, -y, (4)

fil

They then show how each meta-model performs against the known closed-form equation for the

expected wait time for the M/M/1 queue. Unlike the approach taken by Shin, Sargent, and Goel

(2002), we use a custom neural network created by off-the-shelf software and tailored to our

problem specifications. In addition, our approach uses back propagation instead of the SG

algorithm to set the weights. When evaluating our approximation, we consider only test data sets,

not fitting data sets, to get an idea of how valuable our approximation is in the real world. To that

end, we consider average absolute relative error, instead of mean square error (which is an un-

scaled error metric) because it is more relevant to real-world applications. Finally, we present an

approximation for the GI/G/m for which there is no closed-form analytical model to test against,

requiring simulation to obtain the "true" values for the expected wait time in queue. To reduce

the time required to train our neural network to approximate the GI/G/m queue, we used Whitt's

GI/G/m approximation as our starting point. We train our neural network on

= (MTBA, c,,,MST, C2,m), as well as the output from Whitt's approximation, the second, third,

and fourth moments of the arrival and service distributions, and an exact simulation model.
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3 Solution Methods

Hybrid modeling (see Shanthikumar and Sargent [1983] and Sargent [1994]) involves the

combination of analytic and simulation models to solve a problem. In this section, we present

solution approaches that will be investigated within this research related to hybrid analysis of

logistical supply chains. Our basic approach is similar to that of Whitt (1983) and of Sage and

Sykes (1994). In such approaches, the network is decomposed into subcomponents to which the

most appropriate modeling technique is applied.

In order to begin to develop such an approach, we must first investigate the models that will

serve as the underlying analytical approximations within the network. To begin that effort, we

are building upon the work presented in Whitt (1993) for the GI/G/m queue. Future work will

investigate approaches to combining the analytical models within a network framework.

Our approach begins with the development of a better approximation for the GI!G/m queue. We

will examine the building of robust models for the basic building blocks (G/G/s, G/G/s/N, etc.)

needed to model the stochastic storage elements with application to supply chain performance

analysis. While many approximations for these types of models already exist, our approach will

be different in two ways. First, we are concerned with developing robust approximations. That is,

they perform well over a wide variety of conditions and model assumption violations. Second,

our approach to developing the approximations will be non-traditional in the sense that it will not

follow standard stochastic process modeling practices. We utilize neural networks to enhance the

development of the models.

To make this discussion more concrete, let us consider a specific approximation for the expected

waiting time in a GI/G/s queue. One class of queueing approximations (see Whitt [1993])

involves characterizing the arrival process and the service process of the queue by the first two

moments of the distributions. Let X' be the mean and c' be the squared coefficient of variation

for the inter-arrival distribution, and let t and c' be the mean and the squared coefficient of

variation for the service time distribution function. Approximations are then developed based

upon the parameters 3 - (X., c, t, c, s). This set of input parameters involves only second-moment
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information plus the number of servers so the approximation is not a full specification of the

queueing system.

Adapting the notation used in Segal and Whitt (1989), let W be the waiting time before

beginning service and let y = E[W] be its expected value. A simple functional approximation

given in Segal and Whitt (1989) for E[W] in the GI/G/s queue is

E[W(X, c', T, , s) = -+ C

where E[W](,,,,,,S,.ý) represents the exact value computed from the M/M/s queue. In this case, an

analytically tractable queueing model serves as the basis for a more robust approximation. Whitt

(1993) contains a better, albeit more complicated, approximation than that given in the equation

above. It should be clear that the mapping ability is limited for approximations based upon only

the first two moments. There are a wide variety of more complicated approximations, but our

point here is that analytical models can be used as building blocks. To get other performance

measures such as the mean number in the queue, one can use conservation laws such as Little's

formula or derive specific approximations for each performance measure.

Another way to build an approximating function for the expected waiting time would be to fit an

induction model via some technique (least squares, non-linear regression, neural networks, group

method of data handling (GMDH), etc., directly to the output of the system over a wide range of

input parameters and distributions. In this case, we let (,,), . . .. (,k,ý k) be input/output pairs

from the system where 'k represents the kth input and j, the kth output and 3k = f(Ak). Let us

consider the response variable y, univariate for simplicity of discussion, but these techniques are

not limited to that case. While it is possible to build an induction model based upon observations

of the actual system, it will be impractical due to the large amount of data required; however, an

induction model could be built based upon input/output pairs from a detailed simulation. One can

think of this approach as a form of simulation meta-modeling (see Friedman [1996], for

example).
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This process is illustrated in Figure 3.1 and labeled Case 1 where W' represents observations

from the simulation, w* represents the output of the queueing approximation, and 4' represents

the expected waiting time based upon the induction model. The W3 entering the induction model

from the bottom is meant to indicate that the induction model will be trained on observations of

W'. For Case 1, we have = CI, S, w') and y = 4 ' where we have dropped the subscript k

for notational convenience. Case 2 illustrates the potential of using approximations in addition to

the simulation to form 4' For Case 2, we have i=(XC:,T, CswoWs) and y= 4 ' . We will

discuss this possibility further, but first we must discuss how approximations and models can be

combined to form other approximations.

Case 1 Case2

10 Induction Model I•• Induction Model I

W, W"

Figure 3.1: Induction Model Cases

Statistical learning networks, in particular neural networks, have a long history and are becoming

increasingly accepted, provided one can discern t1e hype from the facts within the literature. For

a historical perspective on neural networks, we refer the reader to, for example, Anderson and

Rosenfeld (1988) or Hecht-Nielsen (1990). Given the development of backpropagation learning

techniques, neural networks are now recognized as an important statistical modeling tool. In fact,

Sarle (1994) shows artificial neural networks are "nothing more than non-linear regression and

discriminant models that can be implemented with standard statistical software." Mathematical

proofs (see Irie and Miyake [1988]; Hornik, Stinchcombe, and White [1989]; Cybenko [1989];

and Funahashi [1989]) have shown that neural networks can serve as universal approximators;

that is, they can approximate any function to any desired degree of accuracy. Funahashi and

14



Nakamura (1993) have shown a continuous time-recurrent neural network can serve as a

universal approximator for the finite time trajectory of any given dynamical system. These

results indicate that a neural network can serve as a universal approximator. In practice, whether

or not a good approximation is achieved is problematic.

Figure 3.2 illustrates a fully connected multi-layer feed-forward architecture for approximating

the waiting time in a GI/G/s queue using M/M/s, M/D/s, and DiM/s as basis sub-models as in

Kimura (1994). In Figure 3.2, the analytical models serve as inputs to the input layer of the

network as well as moment information. This is probably the easiest approach to applying the

induction approach to this problem. In this approach, the standard transfer functions can be used.

In a sense, the network is "correcting" for the discrepancies in the approximate queueing models.

Besides incorporating the queueing models as inputs, this methodology could allow the

analytical models to be incorporated into the structure of the network by specifying them as

acceptable transfer functions, that is, functions on the nodes in the network. In fact, Lemnke

(1997) describes an approach called "Active Neurons," which essentially allows the most

appropriate transfer functions to be selected.
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Figure 3.2: Multi-Layer Feed-forward Network

To summarize, our approach will be to investigate the use of neural networks to improve the

approximations associated with the underlying analytical models. The approach taken to

investigate this method will be discussed in Section 4 of this document. To integrate the

analytical models with simulation, we must consider methods to combine the analytical models

with the logistical network simulation.
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4 Developing the Single-Station Approximation

To build our single-station approximation for the GI/G/m, we begin with an existing

approximation and train a neural network to correct the error with additional moment

information, producing a better approximation.

4.1 Motivation

We chose the GI/G/m approximation from Whitt (1993) as the starting point for our neural

network approximation. The model presented has unlimited waiting room, m identical parallel

servers, and the queue operates on a first-come first-served basis. All service and inter-arrival

times are independent, identically distributed random variables with general distributions

specified by their first two moments. The arrival process is specified by X and ca2, which are the

arrival rate and the squared coefficient of variation of the inter-arrival time. The service process

is specified by T and c,2, which are the mean service time and the squared coefficient of variation

of service time. Other assumptions made by Whitt (1993) are that traffic intensity, p, is less than

1, and that mean service time, -, is normalized equal to 1. The traffic intensity, p, is equal to

Arl/m.

In addition to the GI/G/m approximation in Whitt (1993), we used the following inputs for the

neural network: ( ,MST, e, c, m, W• ) where R7 and WY are the expected waiting

time values from Whitt's approximation and from the simulation, respectively. We then added

the second, third and fourth moments of the arrival and service distributions as inputs. These

additional moments provide a more accurate specification of the arrival and service distributions

than is possible with Whitt's two-moment approximation.

4.2 Test Case Generation Methods

To train the neural network, we needed a set of test cases for which the wait time in queue was

known. We developed and tested two test case generation methodologies. Each methodology

was evaluated and compared in terms of its coverage of the neural network input parameter

space. We discuss each method and its advantages and disadvantages in the following sections.
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4.2.1 Distribution Parameter-Based Generation

The first test case generation mechanism is based upon directly generating the parameters of the

distributions to be tested. The disadvantage of this method is that it is difficult to guarantee

suitable distributional properties for the inputs of the queueing system, (A,!, a cc5,i). To

generate these test cases, we randomly select one of the six following distributions

(independently) for both the arrival and service distributions: (exponential, uniform, triangular,

gamma, Weibull, and lognormal). Once the distributions had been selected, values for the

distribution parameters were selected based upon the information in Table 4.1. As indicated in

the table, each parameter of the various distributions is constrained to fall within some given

range of values.

Table 4.1: Generation Method 1 Distribution Parameters

Distribution Parameters

Exponential A, -uniform(1,25)

Uniform min-uniform(1,25) max-uniform(min,25)

Triangular min-uniform(1,25) max-uniform(min,25) max-uniform(1,25)

Gamma a -uniform(1,5) 6 -uniform(1,5)

Weibull a -uniform(1,25) f8 -uniform(1,25)

Lognormal E[X]-uniform(1,25) Jr[X] logstdev-uniform(1,25)

These parameters were used to compute A, p , and the offered load, a = A/lp, for the queue. The

offered load and p (a randomly generated number from 0.05 to 0.95 inclusive) were then used to

compute the required number of servers via m = alp. Table 4.2 presents sample summary

statistics for test cases generated via this approach. Table 4.3 presents the coverage across the

distributions.
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Table 4.2: Generation Method I Parameter Statistical Summary

Mean 5.643 0.12239 0.12014 0.3505 0.3256

Stdev 9.171 0.12949 0.12416 0.8429 0.7228

Sample size 4994 4994 4994 4994 4994

Minimum 1 0.04 0.04002 0 0

Q1 2 0.05318 0.05332 0.0070 0.0066

Media 3 0.07577 0.07527 0.0675 0.0533

Q3 6 0.13107 0.13102 0.4529 0.4179

Maximum 119 1.07228 1.03293 22.0620 16.7383

Table 4.3: Generation Method I Distributional Coverage

Distribution Arrival () Service ("/)

Exponential 16.3 16.3

Uniform 16.4 17.5

Triangular 16.3 16.7

Gamma 18.3 15.6

Weibull 16.4 17.2

Lognormal 16.4 16.7
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difficult to determine how to change the range of the parameters of the underlying distribution to

get a better coverage. We hypothesized that a more uniform coverage of the queue parameter

space would give the neural network better information, thus improving its ability to learn the
approximation. In addition, we wanted to cover a range that would prove useful in real-world

problems. This motivated the development of an alternative test case generation method, which

is discussed next.

4.2.2 Queue Parameter-Based Generation

The underlying approach associated with this method is to generate cases of the form

MTBA,MST, be c , r) that properly cover the parameter space. The difficulty with this method
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is that the parameters of the distributions must then be derived. In addition, it will be difficult to

guarantee the distributional properties of the parameters of the distributions.

The test case generation method is as follows. The mean time between arrivals (MTBA = 1/A) is

randomly chosen - Uniform(0,1). The number of servers was a randomly chosen integer

Uniform(I,150). The queue utilization, p, was chosen randomly - Uniform (0,1). The mean

service time (MST = l/p) was computed by the following equation: MST = pm(MTBA). The

result gives MST generated over the range (0,150).

Next, a distribution type is chosen for arrivals from the following six distribution types: (1)

exponential, (2) uniform, (3) gamma, (4) Weibull, (5) triangular, and (6) lognormal. Each type is

equally likely. Let K represent a random variable that indicates the six types of distributions.

The method used for computing the distribution parameters depends upon the distribution

chosen. Let X represent a random variable from the given distribution with E[X] and V[X]

being its mean and variance, respectively. In addition, let c2 represent the squared coefficient of

variation, that is, c2 = V[XV/E2[X]. For arrivals, E[X] = MTBA and for service E[X] = MST.

Note that all parameters are 0 unless otherwise noted. Thus, according to the above discussion:

MTBA - Unifbrm(0,1)
m - Discrete Uniform(l, 50)

p - Uniform(0,1)

MST = pxmxMTBA

K - Discrete Uniform(1,6)

We now know the mean of the arrival and service distribution, that is, for arrivals E[X] =

MTBA and for service E[X] = MST. We must now determine the other parameters of the

distribution. In order to do this, we assume a viable range for the squared coefficient of variation

when appropriate for the distribution and then randomly generate a value for the squared

coefficient of variation uniformly over this range. From the squared coefficient of variation, we

determine the variance of the distribution and then solve for the parameters of the distribution
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using its mean and variance. Each distribution will have a set of equations that must be solved in

order to match its parameters to the generated mean and variance.

Table 4.4 and Table 4.5 present the equations for determining the parameters for each

distribution. Notice that in the case of the Weibull distribution, the root of a non-linear equation

must be solved. In the case of the triangular distribution, the shape of the distribution was limited

to three cases: symmetric, right-skewed and left-skewed. This was done for two reasons. First,

because the triangular has three parameters, we must assume an additional relationship to match

the mean and variance to the parameters; thus, we assume that the minimum is equal to the

mode, the maximum is equal to the mode, or that the mode is equal to the mean. Secondly, this

allows us to specifically control the skewness.

Table 4.4: Generation Method 2 Distribution Parameters

Exponential

MTBA = E[X] - Uniform(0,1) for arrivals

MST = E[X] = pm(MTBA) for service

Un iform (a, b)

S2 - Uniform(O,1/3)

V[X] =C2 x E[X]

b = E[X]+ ,3x V[X]

Gamma(a = shape, /3 = scale)

c2 - Uniform(O,50)

V[X]=C2 xE[X]

a = E[Xlx E[Xl/V[X]

p = v[x/E[x]
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Lognorma l(,U, ,o

c2-Uniform(O,5O)

V[X]= C2 x E[X]

A= E[X]
~ v[x]
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Table 4.5: Generation Method 2 Distribution Parameters

Weibull(a = shape, fi = scale)

c2 - Uniform(O,50)

v[x]=c2 xE[X]

solve: c -1I for a
r 2 1+2-

SE[X]

Triangular(a=min, c-mode, b-max)

Randomly choose among one of three equally likely cases:

Symmetric

c2 - Uniform(O, 1/6)

V[X] =C2 xE[X]

a = E[X]- .6×i [X-]

c = E[X]

b=E[X]+/6 xV]

Positive Skew

c 2 - Uniform(O,1/8)

V[X]c 2 xE[X]

a = E[X]- i2× Y[x]

c=a
b=E [X]+ 2,r2 x ý[X]

Negative Skew

c2 -Uniform(O,1/2)

V[X]c 2 xE[X]
a = E [X] 2 12 x V[X-]

C=l

b = E[X]+ V2×-V2X]
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The distributional properties of the test cases are significantly improved over the previous test

case generation methodology. Table 4.6 presents sample summary statistics for test cases

generated via this approach. Table 4.7 presents the coverage across the distributions. Figure 4.3

and Figure 4.4 present the scatter plots for the distributional parameters. Note that while MTBA

appears to be uniformly distributed, MST does not; however, the parameter space is still fairly

well covered. In Figure 4.3, we have a scatter plot for the arrival distribution's squared

coefficient of variation (CV2A). Note that it is nearly uniformly distributed with a higher

concentration around 0 due to the exponential, uniform, and triangular distributions, all of which

have squared coefficients of variation less than or equal to 1.0: The scatter plot for the squared

coefficient of variation for the service distribution indicates a similar pattern.

Table 4.6: Generational Method 2 Parameter Statistical Summary

IM MTBA MST

Mean 75.271 0.50075 19.022 12.914 13.021

Stdev 43.419 0.29016 21.878 16.067 16.049

Sample size 7999 7999 7999 7999 7999

Minimum 1 0.00008 0.001 0 0

Q1 37 0.24113 3.030 0.223 0.238

Median 76 0.50665 10.484 1 1

03 113 0.75055 27.173 25.416 25.830

Maximum 150 0.99997 130.591 49.999 49.981

Table 4.7: Generation Method 2 Distributional Coverage

Distribution Arrival Service(%

Exponential (1) 16.0 16.7

Uniform (2) 16.2 16.2

Triangular (5) 17.3 16.2
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Figure 4.3: Generation Method 2 Parameter Scatter Plots

In the scatter plot of rho versus MST, we see that it appears to cover half its space nearly

uniformly, divided by an upward-trending diagonal line. The cover is constrained in this way

because MST is a function of both rho and the number of servers, both of which have finite

bounds. For example, it is impossible to have a rho/MST combination of (0.2,100), because it

would require the number of servers to be at least 500, which exceeds its range of (0,150). As
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seen in Figure 4.4, the coverage of rho versus the number of servers is quite good. The

distributions are uniformly distributed across their types as expected.
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Figure 4.4: Generation Method 2 Parameter Coverage

Figures 4.5 - 4.8 show the parameter plots for the two data generation methods side-by-side to

facilitate easy comparison of the two methods. As seen from the plots, Method 2 has better

coverage in the squared coefficients of variation, servers, and mean time between arrivals.

Method 1 appears to be a little better in mean service time; however, it should be noted that in

Method 1, MST does not extend all the way to zero, unlike in Method 2. In addition, it is unclear

whether MST would retain its near-uniformity if the underlying parameters of the service

distrihntinn were changed.
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Based upon these results, we decided to use Method 2 for generating the test cases for the neural
network training regiment. A total of 8000 test cases were generated. For each case, a simulation

must be executed to estimate the performance of the queueing system. Then the cases can be

used for training.

4.3 GIG/c Simulation

Initially, all simulations were developed using Arena®. Later, we changed the development to JavaTM for

a number of reasons, primarily due to difficulties we were having in implementing a half-width

terminating condition within Arena®. A secondary reason was speed; Arena® proved very slow.
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Finally, we experienced difficulties with the Gamma random generation algorithm within

Arena®. Initially, we used half-width terminating conditions. This, however, resulted in very

long simulation runs for certain test cases, so we implemented a maximum execution time limit

that terminated a replication early if it had run for more than an allotted amount of real-world

time. While this kept the simulation run-lengths down, it also greatly complicated verification of

the simulation by making the simulation unrepeatable due to differences in execution speeds on

different machines and even on the same machine under differing conditions. For these reasons,

we went to a simple simulation-time-based warm-up and run-length. This provided repeatability

but required us to determine a suitable run-length for each replication. We decided to use

approximations from Whitt (1989).

The JSL's (Java TM Simulation Library) current version has packages that support random

number generation, statistical collection, basic reporting and discrete-event simulation modeling.

The development of a simulation model is based upon subclassing the ModelElement class that

provides the primary recurring actions within a simulation (setup, before replication, warm-up,

after replication, and end simulation) and event scheduling and handling. The user adds

developed-model elements to an instance of Model and then executes the simulation.

The queueing simulation involves the development of a ModelElement that represents the queue,

the server and the arrival/service processes. The class GGCWSModel, shown below, represents

this object. In this class, we use response variables to collect the waiting time in the system and

other performance measures.

Exhibit 4.1: GGc WSModel

public class GGcWSModel extends ModelElement f

private Queue myWaitingQ;

private int myNumServers;

private DistributionIfc myServiceDistribution;

private DistributionIfc myArrivalDistribution;

private RandomVariable myServiceRV;

private RandomVariable myArrivalRV;
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private TimeWeighted myNumBusy;

private ResponseVariable myws;

private ArrivalListener myArrivalListener;

private EndServiceListener myEndServiceListener;

public GGcWSModel(){

this(1, new Exponential(l.0), new Exponential(0.5));

public GGcWSModel(int numServers, Distributionlfc ad, Distributionlfc sd)

setName ("GGcWSModel");

setNumberOfServe~rs (numServers);

setServiceDistribut ion (sd);

setArrivalDistribution (ad);

myWaitingQ = new Queue("GGC 01");

addModelElement (myWaitingQ);

myNumBusy = new TimeWeighted(0.0, "NumBusy");

addModelElement (myNumBusy);

myWs =new ResponseVariableC"WS");

addModelElement (myWs);

myWs turnOnCountBasedStopping (1000);

myWs .turnOnCountBasedWarmUp (100);

myArrivalListener = new ArrivalListenero;

myEndServiceListener = new EndServiceListenero;

Exhibit 4.2: Event Routine Logic

class ArrivalListener implements ActionListenerlfc{

public void action(JSLEvent event){
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QObjectIfc c = myWaitingQ.enqueue(new Double(getTimeo));

if (myNumBusy.getValue() < myNumServers){

serveNextCustomer();
}

scheduleArrival();

class EndServiceListener implements ActionListenerIfc {
public void action(JSLEvent event) {

myNumBusy.decrement();

QObjectIfc c = (QObjectIfc)event.getMessage(;

double ws = getTimeo) - c.getTimeStamp);

myWs.setValue(ws);

if (myWaitingQ.size() > 0

serveNextCustomer();
}

A simulation model can be made by creating a model and attaching an instance of the

GGcWSModel to the model. Then, the simulation can be run by creating an experiment and

attaching the model to the experiment for execution.

Exhibit 4.3: Creating and Running a Model

// create the containing model

Model m = new Model();

// create the model element and attach it to the main model

GGcWSModel ggc = new GGcWSModel();

m.addModelElement(ggc);

// create the experiment to run the model

Experiment e = new Experiment(m);
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// set the parameters of the experiment

e. setNumberOfReplications (5);

e.setLengthOfReplication(11000.0);

e. setLengthOfWarmUp (1000.0);

// turn on the desired reporting

e. turnOnBatchReport );

e. turnOnExperimentReport );

e. turnOnReplicationReport (;

// tell the experiment to run

e.runAll() ;

This process was automated by allowing the simulation's arrival and service processes to be

specified by the generated test cases. The test cases were saved in a Microsoft® Access database

and read in using Java's JDBCTM functionality.

4.4 Running the Test Cases

The following steps were performed for each case in the table containing the simulation test

cases:

1. Read fields from database and use them to set the simulation parameters

2. Run the simulation

3. Write simulation results back out to the database

We set the maximum number of entities to 1,000,000 with a warm-up of 500,000 entities. In the

exhibit below, we show the code contained within GGcWSModel used to set these limits.

Exhibit 4.4: Setting the Max Entities and Warm-up

myWs = new ResponseVariable("WS");

addModelElement (myWs);

myWs. turnOnCountBasedStopping (1000000);

myws. turnonCountbaseawarmup (tuuuuu);
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Exhibit 4.5: Capturing the Simulation Output

public class GGcWSModelobserver extends ModelElementObserver{

private ResultSet myRS;

public GGcWSModelobserver(ResultSet rs){

super();

myRS rs;

public void afterExperiment(ModelElement m, Object arg){

GGcWSModel ggcModel = (GGcWSModel) m;

double wqHiW, lqHW, wsHW, wq,,ws, wqVar, wsVar, lq, ls, lqVar,

lsVar, numBusy, warmup, runlength;

long numArrived, numServed;

wqHW =ggcModel.getWQHalfwidtho;

lqHW = ggcModel.getLQHalfwidtho;

wsHW =ggcModel.getWSHalfwidtho;

nurnArrived =ggcModel .getNumEntitiesArrived 0;

numServed =ggcModel.getNumEntitiesServedo;

wq = ggcModel.getTimelnQAverageo;

wqVar = ggcModel .getTimelnQVariance 0;

ws = ggcModel.getTimelnSystemAverageo;

wsVar =ggcModel.getTimelnSystemVarianceo;

lq = ggcModel.getNumberlnQAverageo;

lqVar = ggcModel.getNumberln.QVarianceo;

numBusy =ggcModel.getNumberBusyAverageo;

warmup =ggcModel.getLengthOfWarmUpo;

runlength = Math .min C ggcModel .getApproximateRunLengthoC,

65000000.0 )

try{

mJyR3. updmtcDoc.iblc"Q_1, wIW

myRS.updateDoubleC"LQHW," lqHW);

myRS.updateDouble("IWSHW," wsHW);,
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myRS updateLong ("NumArrived," numArrived);

myRS.updateLong("NumServed," numServed);

myRS.updateDouble ("WQ, "wq);

myRS.updateDouble("WS," ws);

myRS.updateDouble("LQ," lq);

myRS.updateDouble("varWS," wsVar);

myRS.updateDouble("varWQ,"I wqVar);

double approxWQ = myRS getDouble ("WhittApproxWQ");

double approxWS = myRS.getDouble("WhittWS");

double absError = Math.abs(ws - approxWS);

myRS.updateDouble("WQ_Error," wq - approxWQ )

myRS.updateDouble("WhittAbsError," absError);

myRS updateDouble ("WhittAbsRelError," absError/ws);

myRS.updateDouble("BusyServers," numBusy);

myRS.updateDouble("Warrnup," warmup);

myRS .updateDouble ("RunLength," runlength);

myRS updateRow 0;

}catch (SQLException e){

// TODO Auto-generated catch block

e printStackTrace 0;

For the correlated arrivals cases, we generated a correlation coefficient -Uniform(O,1). We

modified the simulation code as follows:

Exhibit 4.6: Setting the Arrival Distribution (Correlated Arrivals)

myAD = getDistribution(myAflnum, myAflPl, myAflP2, myAflP3);

mySD = getDistribution~mySDnum, mySDPl, mySDP2, mySDP3);

doubleH[ coefs = {myArrCorrelationCoef};
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myGGc.setArrivalDistribution(coefs, myAD);

myGGc. setServiceDistribution (mySD);

myGGc. setNumberOfServers (myServers);

public void setArrivalDistribution(double[] c, DistributionIfc d) {

if (d == null)

throw new IllegalArgumentException("Arrival Time

Distribution was null!");

myArrivalDistribution = d;

if (myArrivalRV == null){// not made yet

myArrivalRV = new ARTARandomVariable (c,

myArrivalDistribution);

myArrivalRV.setName("Arrival RV");

addModelElement (myArrivalRV);

} else { // already had been made, and added to model

// just change the distribution

((ARTARandomVariable)

myArrivalRV) . setDistribution (myArrivalDistribution);

((ARTARandomVariable) myArrivalRV) .setCoefficients (c);
}

4.5 Validation/Verification

To validate the simulation model, we created a simple GFG/m model manually in Arena®. We

then selected 20 test cases, performing the same steps for each case:

1. Set up Arena® model with test case parameters

2. Run Arena® model simulation

3. Compare Arena® results with JSL simulation results
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For the 20 test cases compared, our JSL simulation closely matched the output of the Arena®

model. Note that in case numbers 2 and 5, there are large discrepancies between JSL and Arena®.

Both cases use the gamma distribution, for which Arena® has a rarely occurring random variate

generation error. For Case 2, we generated 100,000 random variates using Arena®, the JSL, and

MINITAB®. For the JSL, we used two different methods: one method based upon numerical

inversion of the cumulative distribution function, and the second method based upon an

acceptance-rejection method. In Table 4.8, we present the descriptive statistics for each of these

four methods. Case 2 has the shape parameter equal to 0.0266494848851034 and the scale

parameter equal to 1.34756065089927 and is representive of the cases in which we found the

problem with Arena®. For this case, this distribution was used as the service distribution. In

general, Arena® tended to perform more poorly as the shape parameter approached zero. In

typical simulation scenarios, it is doubtful that such low values for the shape parameter would be

observed; however, in our context and due to the parameter coverage associated with our test

case generation mechanism, such values are very likely. As one can see from the table, Arena's

mean is too low, it has significantly higher variance, and there are too many observations in the

tail of the distribution (notice the high 3 rd quartile and the excessively high maximum). This is

confirmed via the box plot given in Figure 4.9. Because Arena's algorithm has higher variance

and produces more random variates in the tail of the distribution, we get longer-than-typical

service times and thus more queueing than should be expected. This manifested itself in the

results. Obviously, when it is important to control the error in fitting to the degree required in

this research, such a difference cannot be tolerated.

Table 4.8: Descriptive Statistics for Gamma Testing

Arena"'JSL Inversion.. J.L A/R MINITAe

Count 100000 100000 100000 100000

Mean 0.0347 0.03527 0.03825 0.03659

StDev 0.2408 0.21783 0.22572 0.22714

Minimum U.UuUu u.uuuuu u.uuouu 0.00000

1 st Quartile 0.0000 0.00000 0.00000 0.00000
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Median 0.0006 0.00000 0.00000 0.00000

3rd Quartile 0.0079 0.000002 0.00002 0.00002

Maximum 31.4472 9.39469 6.92864 8.70346

30-

10-

I I I, I

ArenaG JSLG JSLARG MTBG

Figure 4.9: Box Plots for Gamma Testing

Thus we determined that the error lies with Arena® and that our simulation is correct for these

cases.

Exhibit 4.7: Comparison of WQ Between JSL Simulation and Arena®

Case Number JSL. WQ Arena"® WQ

1 0.0 0.0

2 0.4722164637 0.00000228
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Cae N e AIIUena W II

3 0.0004895954 0.00070627

4 50.468557708 49.8721

5 0.1462066871 0.7197

6 7.1359898076 7.2072

7 0.0 0.0

8 0.0000002281 0.00000059

9 0.0 0.00178797

10 0.0 0.0

11 0.0020464259 0.00000031

12 0.0 0.0

13 0.0 0.0

14 0.0000073843 0.00000445

15 9.9532776996 9.0675

16 0.0 0.0

17 0.0 0.0

18 0.1247152412 0.1177

19 0.0007551607 0.00083055

20 0.0 0.0
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5 Developing and Testing the Neural Network Approximation

In this section, we discuss the software packages we used and the experiences with both. We also

summarize our approach, describe how we implemented Whitt's approximation, and cover cases

with independent arrivals and correlated arrivals.

5.1 Software Decision

For the majority of the project, we used a commercial software package called NeuroSolutions

4.0 from NeuroDimension. We continually worked to train the neural network to create a better

GIIG/m queueing approximation than Whitt's approximation. Several months after using this

software and after going through several cycles of modifying data generation methods and

simulation techniques, we discovered what appears to be a significant and troubling flaw in the

NeuroSolutions software. When training a neural network with NeuroSolutions, one specifies a

desired output that the neural network is intended to approximate as closely as possible. When

testing is performed, the software creates an output file formatted with two columns: desired

output and actual output (the output of the neural network). The desired output column should

have contained the same data that was fed into the neural network and on which the network was

supposed to have been trained. There should be no discrepancy between what is being read into

the software and what is being used to train the network; however, as Table 5.1 shows, it was off,

often quite significantly, from what had been read into the software. In particular, note the

highlighted row. It became very clear that we could never achieve the desired error

approximations under these conditions. This discovery called into question the entire software

package and prompted us to- search for a replacement package with very little time remaining in

the project. As an additional note, this software problem caused significant delay in the project

(approximately three months). We tried many different methods to improve our approximations.

These efforts distracted significantly from the results we were able to achieve in the time allotted

for the project.
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Table 5.1: Example of Discrepancies Between WQ (In) and WQ (Out)

Des WQ (in) Des WQ (Out)

0.4450841170 0.4451450000

0.0006873430 0.0008440000

56.3773346900 56.3772810000

0.1757049280 0.1755260000

7.1561559070 7.1560730000

0.0021201930 0.0021100000

0.0000017338 0.0000000000

8.5581994170 8.55817400000

0.1042025480 0.1042190000

0.0008299960 0.0008440000

0.0349463810 0.0350210000

0.3072925160 0.3071710000

0.0006944270 0.000844000

0.2741871870 0.2742600000

0.0578146150 0.0578060000

0.0000063257 0.0000000000

We found a package by NeuralWareTM called NeuralWorks Predict®, and downloaded a demo

version. Even with the limit of 512 cases for training (of which only 340 were used for fitting

with the remaining used for testing), the software was immediately able to tie Whitt's

approximation within statistical error, something that had eluded us with NeuroSolutions for

several months. In addition, the training times for Predict were a very small fraction of those

required for NeuroSolutions. Finally, there are a number of different training options and

customizations available in Predict that we have not yet tried. In what follows, we discuss our

approach to training the neural networks.
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5.2 Overview of Approach

To begin the training process, we first exported a data set from Microsoft® Access to a

Microsoft® Excel spreadsheet format. Next, we opened that spreadsheet in Excel and ran the

Predict add-in. We selected part of the data set on which to train, selected the inputs and desired

output, configured a number of software parameters, and instructed the software to train the

neural network. The inputs we used included (for both the arrival and service distributions):

* Mean

* Squared coefficient of variation

* Percentiles (0.1, 1", 5'b, 9 5th, 9 9th, 99.9th)

* Quartiles (1st and 3rd)

* Moments (2fd 3 rd, 4 th)

Other inputs included:

* Servers

* Rho

* Upper bound on WQ from (Kleinrock [1976])

* Correlation coefficient (for correlated cases only)

To test the neural network after training, we ran it on a different range of test cases. We then

computed statistics for the following error metrics for both Whitt's approximation and our neural

network approximation: absolute error and absolute relative error. In order to get the values for

Whitt's approximation, it was necessary to implement his equations.

5.3 Implementing Whitt's Approximation

We implemented Whitt's approximation for the expected waiting time in a GL/G/m queue in

JavaTM. The code was modeled after the equations found in Whitt (1993). The method, which

returns WQ for Whitt's approximation is shown below.
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Exhibit 5.1: WQ from Whitt's Approximation

public double getApproxWaitInQO{

double ewqMMm = MMcWq(myRh6, 1.0, myNumServers);

double scv = (mySCVA + mySCVS)/2.0;

double phi = phi(myRho, mySCVA, mySCVS, myNumServers);

double wq = phi*scv*ewqMMm;

return(myMST*wq);

Exhibit 5.2: Functions Required by GetApproxWaitlnQ

public static double MMcWq(double rho, double mu, int c){

if ((rho <= 0.0) 11 (rho >= 1.0))

throw new IllegalArgumentException("Utilization must be (0,1)");

if (mu <= 0.0)

throw new IllegalArgumentException("Service rate must be > 0");

if (c <= 0)

throw new IllegalArgumentException("Number of servers must be >

0")

double a = c*rho;

double csa erlangC(c, a);

double cmwq = 1.0/((I.0 - rho)*c*mu); // conditional mean wait in

queue

return(csa*cmwq);

private double phi(double rho, double scva, double scvs, int m){

dkubI phi,

double scv = (scva + scvs)/2.0;

if (scva == scvs){ // this case should reduce directly to psi
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phi = psi(scva, m, rho);

} else if (scva > scvs){

double d = 4.0*scva - 3.0*scvs;

double a = (4.0*(scva - scvs))/d;

double b = scvs/d;

phi = a*phione(m, rho) + b*psi(scv, m, rho);

} else {// scva < scvs

if (scva == 0.0) // handle special case where equation 2.25

doesn't reduce

phi = phiThree(m,rho);

else {

double d = 2.0*(scva + scvs);

double a = (scvs - scva)/d;

double b = (scvs + 3.0*scva)/d;

phi = a*phiThree(m, rho) + b*psi(scv, m, rho);
}

}
return (phi);

private double psi(double scv, int m, double rho){

double psi;

if (scv >= 1.0)

psi = 1.0;

else {
double x = 2.0*(1.0 - scv);

psi = Math.pow(phiFour(m, rho), x);
}
return (psi);

}

Exhibit 5.3: More Functions Required by getApproxWaitlnQ

private double gamma(int m, double rho){
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double x;

x = (1.0-rho)*(m-l.0)*(Math.sqrt(4 +5*m) - 2.0)/(16.0*m*rho);

double gamma = Math.min(0.24,x);

//System.out.println("gamma = " + gamma);

return (gamma);

private double phiOne(int m, double rho){

double phiOne = 1.0 + gamma(m, rho);

//System.out.println("phiOne = " + phiOne);

return (phiOne);

private double phiTwo(int m, double rho){

double phiTwo = 1.0 - 4.0*gamma(m, rho);

return (phiTwo);
}

private double phiThree(int m, double rho){

double x = Math.exp(-2.0*(l.0-rho)/(3.0*rho));

double phiThree = phiTwo(m, rho)*x;

return (phiThree);

private double phiFour(int m, double rho){

double x = (phiOne(m, rho) + phiThree(m, rho))/2.0;

double phiFour = Math.min(l.0, x);

return (phiFour);
}

Exhibit 5.4: More Functions Required by getApproxWaitlnQ

public static double erlangB(int m, double a){

double b = 1.0;

double d = 1.0;

double t = 1.0;
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for(int i=l; i<=m; i++){

t = a*b;

d= i + t;

b = t/d;

}

return(b);
}

.public static double erlangC(int m, double a){

double b = erlangB(m,a);

double t = m*b;

double d = m - a*(l.O-b);

return(t/d);

5.4 Independent Arrivals Case

In this section, we present comparisons between the neural network and Whitt's GI/G/m

approximation for cases with independent arrivals.

In addition to comparing our neural network approximation with Whitt's approximation, we also

compare both approximations with mean service as an approximation of WS. This serves as a

quick litmus test on the applicability of each approximation. The reasoning behind this decision

is simple; both our neural network approximation and Whitt's approximation yield the expected

waiting time in queue as outputs. To obtain an approximation for the waiting time in the system,

we use the equation WS = WQ + MST. There are two components to the mean waiting time in

system: mean waiting time in queue, and mean service time. Clearly, if we can better predict the

mean waiting time in system with the mean service time alone than we can if we add an

approximation for the mean time in queue, this implies that the approximation for WQ has no

practical value. Since the mean service time is better and is a known quantity requiring no

u1Umlputatiun, wc may ad wc11 uc it and not cxpcnd limitcd rmnouroc3 approximating WQ. Thua,

we always compare each approximation to the mean service time to determine whether we not
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only did better than the other approximation, but also whether our approximation is at least as

good as the mean service time.

To measure the performance of our neural network approximation, we use the following metrics:

"absolute error and absolute relative error, as defined in Table 5.2.

Table 5.2: Error Metric Definitions

Error Metric Definition

Absolute Error W., Wal

Absolute Relative Error a w_

jq 
ýqws

Wq

The superscript s denotes "simulation," while the superscript a denotes "approximation."

Subscripts are used to differentiate between time in queue and time in system. For example,

MST AE is given by

I j~s -S W-'-MSTI
• - MST1 and MST ARE is given by WI

We initially trained the neural network using all test cases, including those where WQ was zero.

We then hypothesized that if we could improve the neural network fit by training only on cases

where WQ is non-zero, then, assuming we could accurately predict which cases were going to

have no queueing, we would simply use MST for WS in those cases. For all others, we would

use WQ + MST. This should eliminate a source of error, since when WQ is zero, in steady state

WS = MST, and therefore attempting to estimate WQ, will likely only introduce error in the

estimation of WS. Thus, we decided to test our hypothesis by splitting the experiment into two

categories: data sets that excluded cases where WO is zero, and data sets that did not.
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5.4.1 Non-Zero WQ Only

We trained the neural network on 2500 test cases, and tested it on the remaining cases in the data

set (approximately 2400).

Table 5.3: Comparison of ARE for Independent Cases (Non-Zero WQ)

NN ARE Whitt ARE MST ARE

Mean 0.08925 0.1138 0.19838

StDev 0.25016 1.4016 0.29613

Minimum 0 0 0

Q1 0.00516 0.0019 0.00253

Median 0.02102 0.0109 0.02188

Q3 0.09080 0.1037 0.31904

Maximum 5.68965 68.1421 0.99919

P(o.01) 0.35905 0.48916 0.41785

,b(0.05) 0.64387 0.65930 0.57298

P(o.10) 0.76456 0.74520 0.63094

P(0.50) 0.97540 0.97873 0.81 735

/(1.00) 0.99416 0.99625 1.00000

P(5.00) 0.99917 0.99958 1.00000

95% CI on Mean (Lower) 0.07923 0.0577 0.18652

95% CI on Mean (Upper) 0.09927 0.1699 0.21024

From Table 5.3, notice that both the mean and variance of ARE for our approximation are lower

than for the Whitt's approximation, as well as for MST. In addition, note that our third quartile

and maximum values are much lower than Whitt's, implying that our approximation has better

worst-case performance than Whitt's approximation. Examining the 95% confidence interval
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bounds, notice that our approximation has a much tighter bound (due to a much lower variance),

which means our approximation should perform more reliably than Whitt's. While the ARE for

our approximation varies across a 2% range (at a 0.05 level of significance), Whitt's

approximation varies across an 11.2% range. In this table, we define /3() as an estimate of the

probability that the absolute relative error will be less than or equal to '. These values provide

insight into the cause behind differences in the mean and standard deviation of the ARE between

the neural network and Whitt's approximation (or MST). For example, as is the case in Table

5.3, if Whitt has higher p-"hat" values than the neural network for increasing gamma, but the

neural network has a lower sample mean, this suggests that the difference in sample means (and

standard deviations) is due to the large difference in maximum error values. A paired t-test

between the difference in the mean ARE for our approximation and Whitt's yields a p-value of

0.196, or slightly greater than 80% confidence that our approximation has a lower mean absolute

relative error than Whitt's approximation.

Table 5.4: Comparison of AE for Independent Cases (Non-Zero WQ)

NN AE Whltt AE MST AE

Mean 41.6 51.3 58

StDev 1265.3 1357.9 1270.9

Minimum 0 0 0

Q1 0.1 0 0

Median 0.2 0.2 0.3

03 1.4 2 5.3

Maximum 61473.1 61473.5 61477.6

95% CI on Mean (Lower) 0 0 7.1

95% CI on Mean (Upper) 92.3 105.7 108.9

Examining I able J.4, we see similar results as with the absolute relative error. Note that the

mean AE of our approximation is lower than Whitt's, and that our standard deviation is lower,

resulting in a tighter 95% confidence interval. Performing a paired t-test, we get a p-value of
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0.172, which means that we have 82% confidence that the mean absolute error of our neural

network approximation will be less than the mean absolute error of Whitt's.

5.4.2 All WQ Cases Included

We trained the neural network on 5000 test cases and tested it on 2500 test cases. When we

included the cases where WQ is zero, we saw an improvement in the neural network, as seen in

Table 5.5 below. Whitt's approximation also did better, but our approximation still had a smaller

sample mean than Whitt's.

Table 5.5: Comparison of ARE for Independent Cases (WQ Can Be Zero)

N ARE Whitt ARE MST AR

Mean 0.0733 0.0877 0.11965

StDev 0.4424 1.3877 0.24499

Minimum 0 0 0

Q1 0.0019 0.0006 0.00068

Median 0.0072 0.0034 0.00405

Q3 0.0421 0.0300 0.06796

Maximum 13.4297 68.1421 0.99919

P(o.01) 0.56623 0.67387 0.63105

/(o.05) 0.76951 0.78511 0.73029

P(o. 10) 0.84514 0.83754 0.77351

/(o.50) 0.97839 0.98479 0.89196

P(1.00) 0.99480 0.99600 1.00000

P(5.00) 0.99880 0.99880 1.00000

95% Cl on Mean (Lower) 0.0560 0.0333 0.11004

95% Cl on Mean (Upper) 0.0907 0.1422 0.12926
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Notice the difference between the means for our approximation and Whitt's is less than it was for

the non-zero cases. Also, note that our standard deviation is not as low (although it is still much

lower than Whitt's); however, our maximum value is much smaller than Whitt's maximum

value, suggesting better worst-case performance for our approximation. Comparing our p-"hat"

values, we see the same phenomenon as with the non-zero cases. A paired t-test on the difference

of means between our approximation's ARE and Whitt's ARE yields a p-value of 0.307,

meaning that we are less confident that our approximation has a lower mean ARE than Whitt's

approximation when we included cases where WQ is zero; however, it has a lower maximum

value and a tighter 95% confidence interval. Finally, note that the 95% confidence intervals of

Whitt's approximation and MST overlap. A paired t-test shows a p-value for the difference

between the mean absolute relative error of Whitt's approximation and MST of 0.123, while the

p-value for the same test between the neural network approximation and MST is less than

0.0001. Thus, there is cause for concern that over the parameter space used, Whitt's

approximation may not always outperform the mean service time as an estimator of the waiting

time in the system, in terms of mean absolute relative error.

Table 5.6: Comparison of AE for Independent Cases (WQ Can Be Zero)

NNAE Whitt.AE. MST AE

Mean 37.4 44.7 45.7

StDev 1244.1 1328.1 1247.2

Minimum 0 0 0

01 0 0 0

Median 0.1 0 0

03 0.4 0.4 0.8

Maximum 61474.7 61473.5 61477.6

95% CI on Mean (Lower) 0 0 0

95% Cl on Mean (Upper) 86.2 96.8 94.7
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In Table 5.6, we see similar results as for absolute relative error. Again, our approximation has a

lower mean and standard deviation, as well as a tighter 95% confidence interval. The paired t-

test on the difference in means between the neural network and Whitt's approximation shows a

more favorable p-value of 0.234, or a 76% confidence level that the mean absolute error of the

neural network is less than the mean absolute error of Whitt's approximation. A paired t-test

between the neural network and mean service time shows a p-value of less than 0.0001, while the

same test between Whitt's approximation and mean service time shows a p-value of 0.458. Thus

again, there is cause for concern that Whitt's approximation may fail to improve over MST when

used to approximate the expected wait in system.

5.4.3 Comparison of Methods

We now examine which of the two training methods is best. Table 5.7 below shows a side-by-

side comparison between the two methods for absolute relative error.

Table 5.7: Comparison for ARE Between Non-Zero WQ and All WQ

No n-Zero WQ AllIWQ

NN ARE WhittARE MSAR NN AR ht R MST ARE

Mean 0.08925 0.1138 0.19838 0.0733 0.0877 0.11965

StDev 0.25016 1.4016 0.29613 0.4424 1.3877 0.24499

Minimum 0 0 0 0 0 0

Q1 0.00516 0.0019 0.00253 0.0019 0.0006 0.00068

Median 0.02102 0.0109 0.02188 0.0072 0.0034 0.00405

03 0.09080 0.1037 0.31904 0.0421 0.0300 0.06796

Maximum 5.68965 68.1421 0.99919 13.4297 68.1421 0.99919

95% Cl on Mean (Lower) 0.07923 0.0577 0.18652 0.0560 0.0333 0.11004

95% Cl on Mean (Upper) 0.09927 0.1699 0.21024 0.0907 0.1422 0.12926

From Table 5.7 above, you can see that while the mean ARE is lower for the neural network, it is

also much lower for Whitt's approximation. In addition, the neural network's standard deviation
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has increased, while the standard deviation for Whitt's approximation has decreased. Performing

hypothesis tests on the difference in means sheds more light on the influence the training method

has on the relative performance of the neural network approximation. Table 5.8 below shows p-

values for the paired t-tests for the difference in the mean between the variable in a given row

and the variable in a given column. The null hypothesis used in all cases was "less than 0," and

the mean of the null hypothesis is zero.

Table 5.8: p-value Comparison Matrix

Non-Zero WQ AJI WQ

NN ARE Whitt ARE MST ARE NN ARE Whitt ARE MST ARE

NN ARE 0.196 0.000 0.307 0.000

Whitt ARE 0.002 0.123

As seen in Table 5.8, training and using the network only on cases where WQ is non-zero

(queueing occurs) provides the best results in terms of p-value or confidence that our

approximation is better than Whitt's in terms of absolute relative error for the independent

arrivals cases.

Table 5.9: Comparison for AE Between Non-Zero WQ and All WQ

Non-Zero WQ All WO

NN AE Whitt AE MST AE NN AE Whitt AE MST AE

Mean 41.6 51.3 58 37.4 44.7 45.7

StDev 1265.3 1357.9 1270.9 1244.1 1328.1 1247.2

Minimum 0 0 0 0 0 0

01 0.1 0 0 0 0 0

Median 0.2 0.2 0.3 0.1 0 0

Q3 1.4 2 5.3 0.4 0.4 0.8
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Non-Zero W All WO

NAE WhittAIE MTE NNA WAE IVM$TAIE

Maximum 61473.1 61473.5 61477.6 61474.7 61473.5 61477.6

95% CI on Mean (Lower) 0 0 7.1 0 0 0

95% CI on Mean (Upper) 92.3 105.7 108.9 86.2 96.8 94.7

Table 5.9 shows comparisons between non-zero WQ and all WQ for absolute error. As you can

see from the table, all three means (neural network, Whitt and MST) are lower for training on all

WQ than for training on only non-zero WQ; however, the raw difference between them is

smaller. For example, for the neural network trained on non-zero WQ, the mean absolute error

for the neural network is nearly ten less than the mean absolute error for Whitt's approximation.

For the neural network trained on all WQ, the mean absolute error for the neural network is 7.3

less than the mean absolute error for Whitt's approximation. Likewise, the standard deviations

and 95% confidence interval upper bounds are higher across the board for the neural network

trained only on non-zero WQ than for the neural network trained on all WQ. Also of note, the

third quartiles of all three are dramatically smaller for the neural network trained on all WQ.

Table 5.10: p-value Comparison Matrix

Non-Zero WO AllWQ

INN AE Whitt AE MST AE NN AE Whi~ttAE MTA

NN AE 0.172 0.000 0.234 0.000

Whitt AE 0.257 0.458

Table 5.10 shows the p-values resulting from paired t-tests on the difference between the

variable from a given row and the variable of a given column. The null hypothesis for the paired

t-test is "less than 0." From the table above, we can see that we have a higher level of confidence

now that the neural network approximation has a lower mean absolute error than Whitt's

approximation when trained and tested only on non-zero WQ cases. This seems to agree with
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Table 5.9, which we noted showed smaller differences among neural network, Whitt, and MST

for the data set where WQ can equal zero than for the data set where WQ must be non-zero.

These results appear to agree with the results for absolute relative error, suggesting that we can

expect better neural network performance by excluding cases from training and testing where

WQ is zero. This relies heavily upon the ability of the practitioner to predict at the time of

application whether WQ will be zero. At least for independent arrivals, Whitt's approximation

for WQ can be used for this purpose. An appropriate cutoff value must be chosen such that

acceptable levels of Type I and II errors are maintained. For any cases in which Whitt's

approximate WQ falls below the cutoff, the actual WQ is assumed to be zero and MST is used to

estimate WS. If Whitt's approximate WQ is at or above the cutoff, the neural network

approximation is applied. More investigation is needed to determine an optimal or near-optimal

strategy for setting the cutoff level. Another approach to identifying zero-queueing cases without

simulation could utilize classifier neural networks specifically trained to identify cases where

WQ is zero. In both cases, care would have to be taken so that error introduced in this stage does

not negate the improvements obtained over Whitt's approximation in the training stage.

5.5 Correlated Arrivals Case

The primary focus of queueing approximation research has been for the case of renewal input

processes and infinite capacity queues, specifically GIIG/s queues. Because logistic systems will

carry a variety of items that circulate throughout the network, we may expect to have dependence

between inter-arrival times, between service times, and between inter-arrival and service times.

Much of the literature that has examined dependency within queueing networks has focused on

communication systems. We refer the reader to Fendick et. al. (1989), Liew (1994), Cidon et. al.

(1993), and Takine et. al. (1994) for more information on the dependence within queueing

network systems. Parametric-decomposition approaches to queueing networks analyze the nodes

in the network separately after making adjustments to the internal flow processes so they appear

as renewal inputs to the individual queues. Then the current GI/G/s approximations can be used

to analyze the individual nodes. Much research has been done to better represent the internal

flow processes as renewal process (see, for example, the work by Albin [1984]). Another
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would be to build more robust approximations for G/G/s and G/G/s/N queues that can better

handle the dependencies found in these types of networks.

Tin (1985) reported results that indicate the mean queue lengths for correlated and uncorrelated

arrivals can differ by a factor of nine in queueing systems with Markov-dependent arrivals. This

result sparked interest by Patuwo et al. (1993), who examined the effect of correlation in an

MR/NI/ queue as compared to the M/MI/ queue. In examining the effect of lag-1 correlation,

they found the mean number in the system uniformly increases with increasing values of the

correlation. They found that "even small correlations of up to 0.4 can cause the mean number in

the system to nearly double"(Patuwo [1993]) To examine the effect of higher-order lags, they

used the index of dispersion (IDI) (see Fendick et al. [1989]), which describes the cumulative

correlation for the first inter-arrival times, service times, and cross-correlations between inter-

arrival and service times. Again, the results indicated serious effects due to correlation. In Livny

et al. (1993), the authors again study the effect of correlation on single-server queues with a

variety of correlated arrivals and service demands based upon TES processes (see Melamed

[1991]). They conclude that positive correlations always lead to performance degradation in

terms of mean waiting times. For example, they simulated a single-server queue with utilization

factor of 0.50 and positive lag-i autocorrelation in the arrival process of 0.85. When compared to

the benchmark case of an M/M/i under independence assumptions, the mean waiting time was

more than 200 times larger for the correlated case. The performance degraded even more

significantly for high utilizations. Simcoe and Pei (1995) conclude that the common assumption

of the uniform distribution model for traffic is inappropriate, because it can seriously

underestimate the amount of output loading that occurs within the node. This raises serious

questions for the ad hoc use of GI/G/s queueing approximations and suggests that the

development of better G/G/s and G/G/siN approximations is needed. It is for these reasons that

we decided to examine and develop a neural network approximation for the correlated arrivals

case.

In this section, we present comparisons between the neural network and Whitt's GIIG/m

approximation for cases with correlated arrivals. We split our experiment with correlated arrivals

into two classes: data sets that exclude cases where WQ is zero, and data sets that did not.
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5.5.1 Non-Zero WQ Only

We trained the neural network on 5000 test cases and tested on the remainder of the data set (350

test cases). For correlated cases, training on only non-zero WQ cases introduced an unexpected

problem. While you can see from Table 5.11 and Table 5.12 below that we had no problem

beating Whitt's approximation, when comparing our approximation for WS to simply the mean

service time (MST), we see that we did worse, statistically speaking. The reason for this anomaly

is that whenever WQ is non-zero and the neural network returns zero (or a negative value is

truncated to zero), we incur a very large absolute relative error for that case, demonstrably larger

than we would if we simply said WS equals MST.

Table 5.11: Comparison of ARE for Correlated Arrivals (Non-Zero WQ)

NN AR Whift ARE MST ARE

Mean 0.1388 0.5316 0.11992

StDev 0.7374 3.4111 0.22345

Minimum 0.0001 0 0

Q1 0.0045 0.0022 0.00191

Median 0.02808 0.0116 0.00921

Q3 0.1007 0.1297 0.11532

Maximum 13.4287 55.9119 0.99868

P(O.01) 0.37536 0.48424 0.507163

/3(0.05) 0.63897 0.65903 0.670487

(o.0.10) 0.74785 0.71920 0.736390

P(0.50) 0.93696 0.91117 0.914040

P(1.00) 0.99713 0.94269 1.000000

i750)0.9971~3 0.9 t(UtB 1.UUUUUU

95% Cl on Mean (Lower) 0.0612 0.1725 0.09639
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NNARE Whi.....~Vtt ARE .MST ARE7

95% CI on Mean (Upper) 0.2164 0.8908 0. -14344

From Table 5.11, we see that our approximation ARE has a much lower mean and standard

deviation that Whitt's approximation. A paired t-test between the neural network approximation

and Whitt's approximation yields a p-value of 0.017, giving a better than 98.3% confidence level

that the mean absolute relative error of our approximation is less than the mean absolute relative

error of Whitt's approximation. In addition, the third quartile and maximum for our

approximation is less than for Whitt's approximation, suggesting better worst-case performance

for our approximation for correlated arrivals. This is supported by the p-"hat" values in the table.

At 10% absolute relative error and above, the neural network has a larger fraction of cases "in-

range" than Whitt's approximation. Whitt's approximation has more cases that fall within ± 5%

or less than our neural network approximation, but our approximation has fewer extreme values,

resulting in better overall performance; however, neither our approximation nor Whitt's is

statistically better than MST. The p-value for the paired t-test between our approximation and

MST is 0.687, while for Whitt's approximation, it is 0.988. Thus we have clearly done better

than Whitt, but the challenge remains to obtain a good approximation for the correlated case.

Table 5.12: Comparison of AE for Correlated Arrivals (Non-Zero WQ)

NN AE .W~hitt AE MST.AE..

Mean 182.0 203.7 182.8

StDev 3290.4 3297.5 3290.6

Minimum 0 0 0

Q1 0.1 0 0

Median 0.2 0.1 0.1
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NNAE , IWhitt AE I I II.IMST AE

Q3 0.9 1.4 1.1

Maximum 61472.8 61473.5 61477.6

95% Cl on Mean (Lower) 0 0 0

95% CI on Mean (Upper) 528.4 550.8 529.2

Examining Table 5.12 shows similar results as with ARE for cases with non-zero WQ. A paired

t-test between the neural network and Whitt's approximation yields a p-value of 0.039, or a

96.1% confidence level that the mean absolute error of the neural network approximation is less

than the mean absolute error of Whitt's approximation. A similar comparison to MST yields a

surprising result, yielding a p-value of less than 0.0001, meaning that in terms of absolute error,

our neural network gives a good approximation for correlated arrivals.

5.5.2 All WQ Cases Included

We trained the neural network on 5000 test cases and tested it on 2500 test cases. We saw an

improvement when we included the cases where WQ is zero. As seen in Table 5.12 and Table

5.13 below, training all cases gave an improvement across the board; however, we were still

unable to do statistically better than MST for an approximation for WS, but we have far from

exhausted all possible directions for improving the neural network. Among the different

possibilities, we are looking into bounding the output on the neural network, as there is a large

penalty incurred by outputting values that are either too small or too large.

Table 5.13: Comparison of ARE for Correlated Arrivals (WQ Can Be Zero)

NN ARE Whitt ARE MST ARE,

Mean 0.09527 0.492 0.093376

StDev 0.30909 4.435 0.208278

Minimum 0 0 0

Q1 0.00220 0.001 0.000863
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NN ARE Whitt ARE MST AR

Median 0.00791 0.004 0.004498

Q3 0.05484 0.047 0.045672

Maximum 7.14033 135.055 0.999589

P(o.01) 0.545818 0.628651 0.631453

p(o.05) 0.741497 0.755502 0.757503

b (0. 10) 0.807923 0.811124 0.806323

A(0.50) 0.950380 0.930372 0.927171

19(i.00) 0.990796 0.958784 1.000000

P(5.00) 0.999200 0.983593 1.000000

95% CI on Mean (Lower) 0.08314 0.318 0.085206

95% CI on Mean (Upper) 0.10739 0.67 0.101546

In Table 5.13, we again see a much lower mean and standard deviation with the neural network

approximation than with Whitt's approximation. In addition, our approximation has a much

lower maximum absolute relative error than Whitt's approximation, as seen in the table. As with

the non-zero WQ cases, the p-"hat" values suggest the neural network approximation has

generally lower absolute relative error. In addition, the consistently greater p-"hat" values for

increasing ARE suggest the neural network also has better worse-case performance than Whitt's

approximation. A paired t-test between both approximations yields a p-value less than 0.0001,

which means that we are very confident the mean absolute relative error of our neural network

approximation is less than the mean absolute relative error of Whitt's approximation. A similar

comparison to MST yields a far less favorable p-value of 0.629.
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Table 5.14: Comparison of AE for Correlated Arrivals (WQ Can Be Zero)

............. NN AE Whitt AE MST AE

Mean 54.7 81.6 48.7

StDev 1476.9 1557.2 1385.5

Minimum 0 0 0

Q1 0 0 0

Median 0.1 0.1 0

Q3 0.6 0.8 0.6

Maximum 61471.7 61473.5 61477.6

95% CI on Mean (Lower) 0 116.5 0

95% CI on Mean (Upper) 16.4 146.7 103.0

From Table 5.14, we see a similar result as we did for the non-zero WQ cases. Our

approximation has a smaller mean, standard deviation, third quartile, and maximum than Whitt's

approximation. Paired t-tests show our approximation is both better than Whitt's approximation

and MST (p-values of 0.001 and <0.0001 were obtained, respectively). Thus, in terms of mean

absolute error, our approximation not only outperforms Whitt's approximation for correlated

cases, but it is also a good approximation.

5.5.3 Comparison of Methods

In this section, we compare the two training/testing methods for our neural network

approximation to determine which is best for our purposes.

As seen in Table 5.15 below, the mean and standard deviation for the neural network absolute

relative error is lower for the data set containing all cases than it is for the data set containing

only non-zero WQ cases. While Whitt's mean is lower, its standard deviation is higher for the

"All WQ" data set. All three (the neural network, Whitt and MST) have lower first and third

quartile, median, and maximum values for the "All WQ" data set than for the data set containing
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only non-zero WQ cases. From this table, it is hard to determine conclusively which method is

better, although "All WQ" appears to be the winner.

Table 5.15: Comparison for ARE Between Non-Zero WQ and All WQ

Non-.Zero WQ All WQ

NN RE Whitt ARE MST ARE NN ARE Whiff ARE MAST ARE

Mean 0.1388 0.5316 0.11992 0.09527 0.492 0.093376

StDev 0.7374 3.4111 0.22345 0.30909 4.435 0.208278

Minimum 0.0001 0 0 0 0 0

Q1 0.0045 0.0022 0.00191 0.00220 0.001 0.000863

Median 0.02808 0.0116 0.00921 0.00791 0.004 0.004498

Q3 0.1007 0.1297 0.11532 0.05484 0.047 0.045672

Maximum 13.4287 55.9119 0.99868 7.14033 135.055 0.999589

95% Cl on Mean (Lower) 0.0612 0.1725 0.09639 0.08314 0.318 0.085206

95% Cl on Mean (Upper) 0.2164 0.8908 0.14344 0.10739 0.67 0.101546

Table 5.16 shows more clearly the difference between the two neural network training/testing

strategies. The p-values shown are for paired t-tests between row and column variables with a

null hypothesis of "less than 0."

Table 5.16: p-value Comparison Matrix

INon-Zero WQ All WQ

NNARE WhifftARE MST ARE NN ARE Whitt ARE MST ARE

NN ARE 0.017 0.687 0.001 0.629

Whitt ARE 0.988 1.000
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As seen in Table 5.16, the "All WQ" method provides greater confidence that the mean absolute

relative error of our neural network approximation is less than the mean absolute relative error of

Whitt's approximation (99.9% versus 98.3%). In addition, we have greater confidence in the

quality of our approximation, 37.1% that the mean ARE for our neural network is less than the

mean ARE for MST for the "All WQ method" versus 31.3% for the "Non-Zero WQ" method.

Also, note that the "All WQ" method has a higher p-value for the test between Whitt's

approximation and MST, indicating that not only does our approximation perform better, but

also that Whitt's approximation performs more poorly.

It is difficult to draw conclusions from Table 5.17 below. The mean and 95% confidence limit

upper bound for the neural network, Whitt's approximation, and MST all appear to be lower for

the "All WQ" case than for the "Non-Zero WQ" case by roughly the same amount. Relative to

the neural network and MST, Whitt's standard deviation rises when going from "Non-Zero WQ"

to "All WQ," although all three have lower standard deviations for the "All WQ" method than

the "Non-Zero WQ" method. The first and third quartile, median, and maximum values are also

all lower for the "All WQ" method than for the "Non-Zero WQ" method.

Table 5.17: Comparison for AE Between Non-Zero WQ and All WQ

Non-Zero WQ All WO

NN AE Whitt AE MST AS NN AE Whiff AE MST AE

Ma182.0 203.7 182.8 48.1 71.8 48.7

StDev 3290.4 3297.5 3290.6 1385.2 1460.6 1385.5

Minimum 0 0 0 0 0 0

QI 0.1 0 0 0 0 0

Median 0.2 0.1 0.1 0.1 0 0

Q3 0.9 1.4 1.1 0.4 0.5 0.6

Maximumn 61472.8 61473.5 61477.6 61471.7 61473.5 61477.6

95% Cl on Mean (Lower) 0 0 0 0 14.5 0
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Non-Zero WQ All WQ

NN AE Whitt AE MST AE NN AE Whitt AE MST AE

95% Cl on Mean (Upper) 528.4 550.8 529.2 102.4 129.0 103.0

Table 5.18: p-value Comparison Matrix

Non-Zero WQ All WQ

NNAE Whitt AE MST E N AE Whitt AE MST AE

NN AE 0.039 0.000 0.001 0.000

WhittAE 0.955 0.998

Table 5.18 agrees with the results for ARE. As in Table 5.16, the p-values for the neural network

are lower for the "All WQ" method than for the "Non-Zero WQ" method, while the p-value for

Whitt is higher. Thus again, the neural network does marginally better, while Whitt's

approximation does marginally worse. This, in addition to the burden of predicting whether WQ

will be zero at the time of application, makes training and testing the neural network on all cases

for the G/G/m (correlated arrivals) appear to be the best method.
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6 Conclusions and Recommendations for Future Work

We have presented an approximation that provides some improvement over Whitt's

approximation in terms of maximum absolute relative error for the independent arrivals cases.

For the correlated arrivals, our approximation definitely beat Whitt's approximation. In terms of

absolute relative error, our approximation failed to perform better than MST, but in terms of

absolute error, our approximation performed quite well. Thus, clearly the applicability of the

current approximation depends in part upon the error metrics that are of greatest importance to

the practitioner. The fact that our approximation beat MST in absolute error suggests it may be

possible also to perform well in terms of absolute relative error, as there is a relationship between

the two. The challenge remains to determine why the neural network is experiencing large errors

in absolute relative error but not in absolute error.

We obtained our results by using the standard out-of-the-box settings for the neural network

software. The software has a full range of features that we will explore for future research, and

that we feel optimistic will provide further improvements in our results for both independent and

correlated arrivals. Besides the additional software features, we Would like to explore a number

of other areas to improve further our neural network single-station queueing approximation.

As we demonstrated in Section 5.5.3, for independent arrivals we are better off excluding cases

where there is no queueing from both training and testing. As we have pointed out, to use the

neural network selectively on a case-by-case basis like this requires an algorithm by which we

can predict at the time of application whether WQ will be zero. In the future, we plan to compare

the two methods we identified: using a cut-off level based upon Whitt's approximation for WQ

and using a classifier neural network to predict whether WQ is zero. For the cutoff method, we

plan to perform experimentation to determine good alpha and beta levels and compare these

results with those obtained from the classifier neural network. Equipped with these results, we

plan to re-address the issue of whether to exclude non-queueing cases from training and

application of the neural network.
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For correlated arrivals, our results reported that the mean service time was a far more significant

part of the expected waiting time in the system than we anticipated. When correlation is

introduced to the arrival process, we would expect queueing to increase as discussed in Patuwo

(1993) and Livny (1993). We suspect initialization bias could be the culprit and the positive

autocorrelation we introduced could be causing the simulation to take much longer to reach

steady state. We plan to investigate this further by increasing the warm-up and replication entity

counts until the expected time in system stops responding to these increases in entity counts. We

hope that running the simulation longer will reduce the accuracy of MST as an estimator of WS,

which would show that our neural network is a good G/G/m approximation.

As indicated in the results, we have clearly shown the feasibility of substituting a neural network

approximation for part of a simulation, like a queueing station, for example. The original scope

of this work involved the investigation of substituting these approximations into a larger

queueing network simulation representing a logistical network. Based upon our current results,

we can conclude there is hope that the objective can ultimately be achieved.

If a better single-station model can be achieved, especially for the correlated arrivals case, then

current queueing network approximation methods can be married with our approach. A possible

approach would be as follows. Given the network topology, demand characterization, and

resource configuration, the method:

1. Randomly generates a snapshot of demand at an instant in time

2. Simulates the routing and resource-scheduling allocation and loading assignment for each

demand generated

3. Loads or rejects each demand based upon the routing and scheduling analysis

4. Updates the state of the network prior to evaluating each demand

5. Exhausts the list of potential demands in the snapshot

6. Models the performance of state-of-the-network at the network, delivery and resource

levels

7. Summarizes the performance measures over multiple snapshots

8. Reports statistics from the modeled network
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From the demand inputs and distributions, an analytical model of the node offered load

probability distribution can be derived. The node offered load distribution is sampled via Monte-

Carlo simulation to generate sample observations of demand activity for the logistics network at

arbitrary points in time. For each potential demand, the demand is characterized according to its

distribution type and a list of demands is developed. The network is then loaded by randomly

sampling from the demand list, mimicking the routing and scheduling assignments of the

logistics network. These assignments require information concerning the network state, which is

updated given the loading or rejecting of an individual demand from the list. After the demand

list is loaded, the final state of the network is passed to a parametric decomposition-based

queueing network analysis procedure (see, for example, Whitt [1983]), which uses moment-

based approximations for the individual nodes within the network to estimate node performance.

The node performance is then aggregated to achieve logistics network-level performance

measures.

Variations of this approach have been applied to communication network design with great

success. In fact, the approach can predict results within 7% of accuracy compared with actual

measurements and requires computational run times of only tens of minutes, even for very large

networks (see Sage and Sykes [1994]). Important issues to investigate when applying this

approach to military logistical networks include:

* Improved analytical modeling of offered load distributions

* Verification and validation of demand distribution characteristics\

* Development of appropriate loading algorithms

* Examination of renewal demand arrival distributions in parametric decomposition

* Improved queueing and inventory model approximations for specific military supply

situations

* Measuring and estimating the readiness of a network

* Developing and evaluating approximations to handle surge demand and/or transient

conditions

The entire anDroach must be tested and compared to the performance of pure simulation-based

approaches in order to measure the accuracy of the methods. These ideas remain as future

enhancements to our current results.
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